Let Ω be a bounded hyperconvex domain in ℂn and let μ be a positive and finite measure which vanishes on all pluripolar subsets of Ω. We prove that for every continuous and strictly increasing function χ:(-∞,0) → (-∞,0) there exists a negative plurisubharmonic function u which solves the Monge-Ampère type equation . Under some additional assumption the solution u is uniquely determined.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-8, author = {Rafa\l\ Czy\.z}, title = {On a Monge-Amp\`ere type equation in the Cegrell class $\_{$\chi$}$ }, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {89-97}, zbl = {1218.32019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-8} }
Rafał Czyż. On a Monge-Ampère type equation in the Cegrell class $_{χ}$ . Annales Polonici Mathematici, Tome 98 (2010) pp. 89-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-8/