Forced oscillation of third order nonlinear dynamic equations on time scales
Baoguo Jia
Annales Polonici Mathematici, Tome 98 (2010), p. 79-87 / Harvested from The Polish Digital Mathematics Library

Consider the third order nonlinear dynamic equation xΔΔΔ(t)+p(t)f(x)=g(t), (*) on a time scale which is unbounded above. The function f ∈ C(,) is assumed to satisfy xf(x) > 0 for x ≠ 0 and be nondecreasing. We study the oscillatory behaviour of solutions of (*). As an application, we find that the nonlinear difference equation Δ³x(n)+nα|x|γsgn(n)=(-1)nc, where α ≥ -1, γ > 0, c > 3, is oscillatory.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:280285
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-7,
     author = {Baoguo Jia},
     title = {Forced oscillation of third order nonlinear dynamic equations on time scales},
     journal = {Annales Polonici Mathematici},
     volume = {98},
     year = {2010},
     pages = {79-87},
     zbl = {1209.34113},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-7}
}
Baoguo Jia. Forced oscillation of third order nonlinear dynamic equations on time scales. Annales Polonici Mathematici, Tome 98 (2010) pp. 79-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-7/