Consider the third order nonlinear dynamic equation , (*) on a time scale which is unbounded above. The function f ∈ C(,) is assumed to satisfy xf(x) > 0 for x ≠ 0 and be nondecreasing. We study the oscillatory behaviour of solutions of (*). As an application, we find that the nonlinear difference equation , where α ≥ -1, γ > 0, c > 3, is oscillatory.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-7,
author = {Baoguo Jia},
title = {Forced oscillation of third order nonlinear dynamic equations on time scales},
journal = {Annales Polonici Mathematici},
volume = {98},
year = {2010},
pages = {79-87},
zbl = {1209.34113},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-7}
}
Baoguo Jia. Forced oscillation of third order nonlinear dynamic equations on time scales. Annales Polonici Mathematici, Tome 98 (2010) pp. 79-87. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-7/