We study the stability of harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature, and we prove that if Mⁿ is a compact Einstein Riemannian minimal submanifold of a Riemannian unit sphere with Ricci curvature satisfying , then there is no non-degenerate stable harmonic map between M and any compact Finsler manifold.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-6,
author = {Jintang Li},
title = {Stable harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature},
journal = {Annales Polonici Mathematici},
volume = {98},
year = {2010},
pages = {67-77},
zbl = {1217.53076},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-6}
}
Jintang Li. Stable harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature. Annales Polonici Mathematici, Tome 98 (2010) pp. 67-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-6/