Stable harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature
Jintang Li
Annales Polonici Mathematici, Tome 98 (2010), p. 67-77 / Harvested from The Polish Digital Mathematics Library

We study the stability of harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature, and we prove that if Mⁿ is a compact Einstein Riemannian minimal submanifold of a Riemannian unit sphere with Ricci curvature satisfying RicM>n/2, then there is no non-degenerate stable harmonic map between M and any compact Finsler manifold.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:280947
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-6,
     author = {Jintang Li},
     title = {Stable harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature},
     journal = {Annales Polonici Mathematici},
     volume = {98},
     year = {2010},
     pages = {67-77},
     zbl = {1217.53076},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-6}
}
Jintang Li. Stable harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature. Annales Polonici Mathematici, Tome 98 (2010) pp. 67-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-6/