We study the stability of harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature, and we prove that if Mⁿ is a compact Einstein Riemannian minimal submanifold of a Riemannian unit sphere with Ricci curvature satisfying , then there is no non-degenerate stable harmonic map between M and any compact Finsler manifold.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-6, author = {Jintang Li}, title = {Stable harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {67-77}, zbl = {1217.53076}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-6} }
Jintang Li. Stable harmonic maps between Finsler manifolds and Riemannian manifolds with positive Ricci curvature. Annales Polonici Mathematici, Tome 98 (2010) pp. 67-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-6/