We prove a sufficient condition for products of Toeplitz operators , where f,g are square integrable holomorphic functions in the unit ball in ℂⁿ, to be bounded on the weighted Bergman space. This condition slightly improves the result obtained by K. Stroethoff and D. Zheng. The analogous condition for boundedness of products of Hankel operators is also given.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-4, author = {Ma\l gorzata Michalska and Maria Nowak and Pawe\l\ Sobolewski}, title = {Bounded Toeplitz and Hankel products on weighted Bergman spaces of the unit ball}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {45-53}, zbl = {1239.47021}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-4} }
Małgorzata Michalska; Maria Nowak; Paweł Sobolewski. Bounded Toeplitz and Hankel products on weighted Bergman spaces of the unit ball. Annales Polonici Mathematici, Tome 98 (2010) pp. 45-53. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-4/