We revisit Kristály’s result on the existence of weak solutions of the Schrödinger equation of the form -Δu + a(x)u = λb(x)f(u), , , where λ is a positive parameter, a and b are positive functions, while is sublinear at infinity and superlinear at the origin. In particular, by using Ricceri’s recent three critical points theorem, we show that, under the same hypotheses, a much more precise conclusion can be obtained.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-3,
author = {Danila Sandra Moschetto},
title = {Existence and multiplicity results for a nonlinear stationary Schr\"odinger equation},
journal = {Annales Polonici Mathematici},
volume = {98},
year = {2010},
pages = {39-43},
zbl = {1205.35099},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-3}
}
Danila Sandra Moschetto. Existence and multiplicity results for a nonlinear stationary Schrödinger equation. Annales Polonici Mathematici, Tome 98 (2010) pp. 39-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap99-1-3/