We extend and simplify results of [Din 2010] where the asymptotic behavior of the holomorphic sectional curvature of the Bergman metric in annuli is studied. Similarly to [Din 2010] the description enables us to construct an infinitely connected planar domain (in our paper it is a Zalcman type domain) for which the supremum of the holomorphic sectional curvature is two, whereas its infimum is equal to -∞ .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-3-8,
author = {W\l odzimierz Zwonek},
title = {Asymptotic behavior of the sectional curvature of the Bergman metric for annuli},
journal = {Annales Polonici Mathematici},
volume = {98},
year = {2010},
pages = {291-299},
zbl = {1193.30076},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-3-8}
}
Włodzimierz Zwonek. Asymptotic behavior of the sectional curvature of the Bergman metric for annuli. Annales Polonici Mathematici, Tome 98 (2010) pp. 291-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-3-8/