We extend and simplify results of [Din 2010] where the asymptotic behavior of the holomorphic sectional curvature of the Bergman metric in annuli is studied. Similarly to [Din 2010] the description enables us to construct an infinitely connected planar domain (in our paper it is a Zalcman type domain) for which the supremum of the holomorphic sectional curvature is two, whereas its infimum is equal to -∞ .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-3-8, author = {W\l odzimierz Zwonek}, title = {Asymptotic behavior of the sectional curvature of the Bergman metric for annuli}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {291-299}, zbl = {1193.30076}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-3-8} }
Włodzimierz Zwonek. Asymptotic behavior of the sectional curvature of the Bergman metric for annuli. Annales Polonici Mathematici, Tome 98 (2010) pp. 291-299. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-3-8/