We consider the first initial boundary value problem for nonautonomous quasilinear degenerate parabolic equations involving weighted p-Laplacian operators, in which the nonlinearity satisfies the polynomial condition of arbitrary order and the external force is normal. Using the asymptotic a priori estimate method, we prove the existence of uniform attractors for this problem. The results, in particular, improve some recent ones for nonautonomous p-Laplacian equations.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-3-5, author = {Cung The Anh and Nguyen Van Quang}, title = {Uniform attractors for nonautonomous parabolic equations involving weighted p-Laplacian operators}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {251-271}, zbl = {1197.35060}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-3-5} }
Cung The Anh; Nguyen Van Quang. Uniform attractors for nonautonomous parabolic equations involving weighted p-Laplacian operators. Annales Polonici Mathematici, Tome 98 (2010) pp. 251-271. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-3-5/