We prove an intermediate value theorem for certain quasimonotone increasing functions in ordered Banach spaces, under the assumption that each nonempty order bounded chain has a supremum.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-1-4, author = {Gerd Herzog}, title = {An intermediate value theorem in ordered Banach spaces}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {63-69}, zbl = {1200.47070}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-1-4} }
Gerd Herzog. An intermediate value theorem in ordered Banach spaces. Annales Polonici Mathematici, Tome 98 (2010) pp. 63-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-1-4/