We prove an intermediate value theorem for certain quasimonotone increasing functions in ordered Banach spaces, under the assumption that each nonempty order bounded chain has a supremum.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-1-4,
author = {Gerd Herzog},
title = {An intermediate value theorem in ordered Banach spaces},
journal = {Annales Polonici Mathematici},
volume = {98},
year = {2010},
pages = {63-69},
zbl = {1200.47070},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-1-4}
}
Gerd Herzog. An intermediate value theorem in ordered Banach spaces. Annales Polonici Mathematici, Tome 98 (2010) pp. 63-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-1-4/