The long-time behaviour of a unique regular solution to the Cahn-Hilliard system coupled with viscoelasticity is studied. The system arises as a model of the phase separation process in a binary deformable alloy. It is proved that for a sufficiently regular initial data the trajectory of the solution converges to the ω-limit set of these data. Moreover, it is shown that every element of the ω-limit set is a solution of the corresponding stationary problem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-1-1, author = {Irena Paw\l ow and Wojciech M. Zaj\k aczkowski}, title = {Long time behaviour of a Cahn-Hilliard system coupled with viscoelasticity}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {1-21}, zbl = {1201.35048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-1-1} }
Irena Pawłow; Wojciech M. Zajączkowski. Long time behaviour of a Cahn-Hilliard system coupled with viscoelasticity. Annales Polonici Mathematici, Tome 98 (2010) pp. 1-21. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap98-1-1/