Let F:ℳ f →ℱℳ be a bundle functor with the point property F(pt) = pt, where pt is a one-point manifold. We prove that F is product preserving if and only if for any m and n there is an -canonical construction D of general connections D(Γ) on Fp:FY → FM from general connections Γ on fibred manifolds p:Y → M.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-3-4, author = {W. M. Mikulski}, title = {Bundle functors with the point property which admit prolongation of connections}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {253-256}, zbl = {1188.58002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-3-4} }
W. M. Mikulski. Bundle functors with the point property which admit prolongation of connections. Annales Polonici Mathematici, Tome 98 (2010) pp. 253-256. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-3-4/