Let K,R be an algebraically closed field (of characteristic zero) and a real closed field respectively with K=R(√(-1)). We show that every K-analytic set definable in an o-minimal expansion of R can be locally approximated by a sequence of K-Nash sets.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-2-7, author = {Marcin Bilski and Kamil Rusek}, title = {Algebraic approximation of analytic sets definable in an o-minimal structure}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {185-200}, zbl = {1211.03055}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-2-7} }
Marcin Bilski; Kamil Rusek. Algebraic approximation of analytic sets definable in an o-minimal structure. Annales Polonici Mathematici, Tome 98 (2010) pp. 185-200. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-2-7/