By using the well-known Leggett–Williams multiple fixed point theorem for cones, some new criteria are established for the existence of three positive periodic solutions for a class of n-dimensional functional differential equations with impulses of the form ⎧y’(t) = A(t)y(t) + g(t,yt), , j ∈ ℤ, ⎨ ⎩, where is a nonsingular matrix with continuous real-valued entries.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-2-6, author = {Yongkun Li and Changzhao Li and Juan Zhang}, title = {Three periodic solutions for a class of higher-dimensional functional differential equations with impulses}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {169-183}, zbl = {1195.34105}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-2-6} }
Yongkun Li; Changzhao Li; Juan Zhang. Three periodic solutions for a class of higher-dimensional functional differential equations with impulses. Annales Polonici Mathematici, Tome 98 (2010) pp. 169-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-2-6/