Three periodic solutions for a class of higher-dimensional functional differential equations with impulses
Yongkun Li ; Changzhao Li ; Juan Zhang
Annales Polonici Mathematici, Tome 98 (2010), p. 169-183 / Harvested from The Polish Digital Mathematics Library

By using the well-known Leggett–Williams multiple fixed point theorem for cones, some new criteria are established for the existence of three positive periodic solutions for a class of n-dimensional functional differential equations with impulses of the form ⎧y’(t) = A(t)y(t) + g(t,yt), ttj, j ∈ ℤ, ⎨ ⎩y(tj)=y(t¯j)+Ij(y(tj)), where A(t)=(aij(t))n×n is a nonsingular matrix with continuous real-valued entries.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:280833
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-2-6,
     author = {Yongkun Li and Changzhao Li and Juan Zhang},
     title = {Three periodic solutions for a class of higher-dimensional functional differential equations with impulses},
     journal = {Annales Polonici Mathematici},
     volume = {98},
     year = {2010},
     pages = {169-183},
     zbl = {1195.34105},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-2-6}
}
Yongkun Li; Changzhao Li; Juan Zhang. Three periodic solutions for a class of higher-dimensional functional differential equations with impulses. Annales Polonici Mathematici, Tome 98 (2010) pp. 169-183. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-2-6/