Let f and g be entire functions, n, k and m be positive integers, and λ, μ be complex numbers with |λ| + |μ| ≠ 0. We prove that must have infinitely many fixed points if n ≥ k + 2; furthermore, if and have the same fixed points with the same multiplicities, then either f ≡ cg for a constant c, or f and g assume certain forms provided that n > 2k + m* + 4, where m* is an integer that depends only on λ.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-1-7, author = {Xiao-Guang Qi and Lian-Zhong Yang}, title = {Uniqueness of entire functions and fixed points}, journal = {Annales Polonici Mathematici}, volume = {98}, year = {2010}, pages = {87-100}, zbl = {1189.30068}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-1-7} }
Xiao-Guang Qi; Lian-Zhong Yang. Uniqueness of entire functions and fixed points. Annales Polonici Mathematici, Tome 98 (2010) pp. 87-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap97-1-7/