We shall prove, using the result from our previous paper [Ann. Polon. Math. 88 (2006)], that for a quadratic polynomial mapping Q of ℝ² only the geometric shape of the critical set of Q determines whether the complexification of Q can be extended to an endomorphism of ℂℙ². At the end of the paper we describe some interesting classes of quadratic polynomial mappings of ℝ² and give some examples.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap96-3-6, author = {Ewa Ligocka}, title = {On the extendability of quadratic polynomial mappings of the plane}, journal = {Annales Polonici Mathematici}, volume = {95}, year = {2009}, pages = {283-294}, zbl = {1179.30003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap96-3-6} }
Ewa Ligocka. On the extendability of quadratic polynomial mappings of the plane. Annales Polonici Mathematici, Tome 95 (2009) pp. 283-294. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap96-3-6/