Let f:M → N be a local diffeomorphism between Riemannian manifolds. We define the eigenvalues of f to be the eigenvalues of the self-adjoint, positive definite operator df*df:TM → TM, where df* denotes the operator adjoint to df. We show that if f is conformal on a distribution D, then , where denotes the eigenspace corresponding to the coefficient of conformality λ of f. Moreover, if f has distinct eigenvalues, then there is locally a distribution D such that f is conformal on D if and only if 2dim D < dim M + 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap95-2-2, author = {Kamil Niedzia\l omski}, title = {Diffeomorphisms conformal on distributions}, journal = {Annales Polonici Mathematici}, volume = {95}, year = {2009}, pages = {115-124}, zbl = {1162.53011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap95-2-2} }
Kamil Niedziałomski. Diffeomorphisms conformal on distributions. Annales Polonici Mathematici, Tome 95 (2009) pp. 115-124. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap95-2-2/