Let (Ω,,P) be a probability space and let τ: ℝ × Ω → ℝ be strictly increasing and continuous with respect to the first variable, and -measurable with respect to the second variable. We obtain a partial characterization and a uniqueness-type result for solutions of the general linear equation in the class of probability distribution functions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap95-2-1, author = {Tomasz Kochanek and Janusz Morawiec}, title = {Probability distribution solutions of a general linear equation of infinite order}, journal = {Annales Polonici Mathematici}, volume = {95}, year = {2009}, pages = {103-114}, zbl = {1159.60307}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap95-2-1} }
Tomasz Kochanek; Janusz Morawiec. Probability distribution solutions of a general linear equation of infinite order. Annales Polonici Mathematici, Tome 95 (2009) pp. 103-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap95-2-1/