Given an o-minimal expansion ℳ of a real closed field R which is not polynomially bounded. Let denote the definable indefinitely Peano differentiable functions. If we further assume that ℳ admits cell decomposition, each definable closed subset A of Rⁿ is the zero-set of a function f:Rⁿ → R. This implies approximation of definable continuous functions and gluing of functions defined on closed definable sets.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap94-1-3,
author = {Andreas Fischer},
title = {Zero-set property of o-minimal indefinitely Peano differentiable functions},
journal = {Annales Polonici Mathematici},
volume = {93},
year = {2008},
pages = {29-41},
zbl = {1147.03019},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap94-1-3}
}
Andreas Fischer. Zero-set property of o-minimal indefinitely Peano differentiable functions. Annales Polonici Mathematici, Tome 93 (2008) pp. 29-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap94-1-3/