Continuous linear functionals on the space of Borel vector measures
Pola Siwek
Annales Polonici Mathematici, Tome 93 (2008), p. 199-209 / Harvested from The Polish Digital Mathematics Library

We study properties of the space ℳ of Borel vector measures on a compact metric space X, taking values in a Banach space E. The space ℳ is equipped with the Fortet-Mourier norm ||·|| and the semivariation norm ||·||(X). The integral introduced by K. Baron and A. Lasota plays the most important role in the paper. Investigating its properties one can prove that in most cases the space (,||·||)* is contained in but not equal to the space (ℳ,||·||(X))*. We obtain a representation of the continuous functionals on ℳ in some particular cases.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:280962
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap93-3-1,
     author = {Pola Siwek},
     title = {Continuous linear functionals on the space of Borel vector measures},
     journal = {Annales Polonici Mathematici},
     volume = {93},
     year = {2008},
     pages = {199-209},
     zbl = {1154.46013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap93-3-1}
}
Pola Siwek. Continuous linear functionals on the space of Borel vector measures. Annales Polonici Mathematici, Tome 93 (2008) pp. 199-209. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap93-3-1/