Coefficient inequalities for concave and meromorphically starlike univalent functions
B. Bhowmik ; S. Ponnusamy
Annales Polonici Mathematici, Tome 93 (2008), p. 177-186 / Harvested from The Polish Digital Mathematics Library

Let denote the open unit disk and f: → ℂ̅ be meromorphic and univalent in with a simple pole at p ∈ (0,1) and satisfying the standard normalization f(0) = f’(0)-1 = 0. Also, assume that f has the expansion f(z)=n=-1a(z-p), |z-p| < 1-p, and maps onto a domain whose complement with respect to ℂ̅ is a convex set (starlike set with respect to a point w₀ ∈ ℂ, w₀ ≠ 0 resp.). We call such functions concave (meromorphically starlike resp.) univalent functions and denote this class by Co(p)(Σs(p,w) resp.). We prove some coefficient estimates for functions in these classes; the sharpness of these estimates is also established.

Publié le : 2008-01-01
EUDML-ID : urn:eudml:doc:280395
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap93-2-6,
     author = {B. Bhowmik and S. Ponnusamy},
     title = {Coefficient inequalities for concave and meromorphically starlike univalent functions},
     journal = {Annales Polonici Mathematici},
     volume = {93},
     year = {2008},
     pages = {177-186},
     zbl = {1135.30010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap93-2-6}
}
B. Bhowmik; S. Ponnusamy. Coefficient inequalities for concave and meromorphically starlike univalent functions. Annales Polonici Mathematici, Tome 93 (2008) pp. 177-186. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap93-2-6/