We prove that for a finite collection of sets definable in an o-minimal structure there exists a compatible definable stratification such that for any stratum the fibers of its projection onto satisfy the Whitney property with exponent 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap92-2-4,
author = {Beata Kocel-Cynk},
title = {Definable stratification satisfying the Whitney property with exponent 1},
journal = {Annales Polonici Mathematici},
volume = {92},
year = {2007},
pages = {155-162},
zbl = {1146.14031},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap92-2-4}
}
Beata Kocel-Cynk. Definable stratification satisfying the Whitney property with exponent 1. Annales Polonici Mathematici, Tome 92 (2007) pp. 155-162. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap92-2-4/