Non-uniruledness and the cancellation problem (II)
Robert Dryło
Annales Polonici Mathematici, Tome 92 (2007), p. 41-48 / Harvested from The Polish Digital Mathematics Library

We study the following cancellation problem over an algebraically closed field of characteristic zero. Let X, Y be affine varieties such that X×mY×m for some m. Assume that X is non-uniruled at infinity. Does it follow that X ≅ Y? We prove a result implying the affirmative answer in case X is either unirational or an algebraic line bundle. However, the general answer is negative and we give as a counterexample some affine surfaces.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:280158
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap92-1-4,
     author = {Robert Dry\l o},
     title = {Non-uniruledness and the cancellation problem (II)},
     journal = {Annales Polonici Mathematici},
     volume = {92},
     year = {2007},
     pages = {41-48},
     zbl = {1128.14042},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap92-1-4}
}
Robert Dryło. Non-uniruledness and the cancellation problem (II). Annales Polonici Mathematici, Tome 92 (2007) pp. 41-48. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap92-1-4/