Let a and m be positive integers such that 2a < m. We show that in the domain the holomorphic sectional curvature of the Bergman metric at z in direction X tends to -∞ when z tends to 0 non-tangentially, and the direction X is suitably chosen. It seems that an example with this feature has not been known so far.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap92-1-3,
author = {Gregor Herbort},
title = {An example of a pseudoconvex domain whose holomorphic sectional curvature of the Bergman metric is unbounded},
journal = {Annales Polonici Mathematici},
volume = {92},
year = {2007},
pages = {29-39},
zbl = {1133.32005},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap92-1-3}
}
Gregor Herbort. An example of a pseudoconvex domain whose holomorphic sectional curvature of the Bergman metric is unbounded. Annales Polonici Mathematici, Tome 92 (2007) pp. 29-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap92-1-3/