We establish some results on ω-pluripolarity and complete ω-pluripolarity for sets in a compact Kähler manifold X with fundamental form ω. Moreover, we study subextension of ω-psh functions on a hyperconvex domain in X and prove a comparison principle for the class 𝓔(X,ω) recently introduced and investigated by Guedj-Zeriahi.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap91-1-3, author = {Le Mau Hai and Nguyen Van Khue and Pham Hoang Hiep}, title = {$\omega$-pluripolar sets and subextension of $\omega$-plurisubharmonic functions on compact K\"ahler manifolds}, journal = {Annales Polonici Mathematici}, volume = {92}, year = {2007}, pages = {25-41}, zbl = {1140.32027}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap91-1-3} }
Le Mau Hai; Nguyen Van Khue; Pham Hoang Hiep. ω-pluripolar sets and subextension of ω-plurisubharmonic functions on compact Kähler manifolds. Annales Polonici Mathematici, Tome 92 (2007) pp. 25-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap91-1-3/