We consider the Cauchy problem for nonlinear parabolic equations with functional dependence represented by the Hale functional acting on the unknown function and its gradient. We prove convergence theorems for a general quasilinearization method in natural subclasses of unbounded solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-3-5,
author = {Agnieszka Bart\l omiejczyk},
title = {Quasilinearization methods for nonlinear differential-functional parabolic equations: unbounded case},
journal = {Annales Polonici Mathematici},
volume = {92},
year = {2007},
pages = {247-263},
zbl = {1112.35094},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-3-5}
}
Agnieszka Bartłomiejczyk. Quasilinearization methods for nonlinear differential-functional parabolic equations: unbounded case. Annales Polonici Mathematici, Tome 92 (2007) pp. 247-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-3-5/