We consider the Cauchy problem for nonlinear parabolic equations with functional dependence represented by the Hale functional acting on the unknown function and its gradient. We prove convergence theorems for a general quasilinearization method in natural subclasses of unbounded solutions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-3-5, author = {Agnieszka Bart\l omiejczyk}, title = {Quasilinearization methods for nonlinear differential-functional parabolic equations: unbounded case}, journal = {Annales Polonici Mathematici}, volume = {92}, year = {2007}, pages = {247-263}, zbl = {1112.35094}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-3-5} }
Agnieszka Bartłomiejczyk. Quasilinearization methods for nonlinear differential-functional parabolic equations: unbounded case. Annales Polonici Mathematici, Tome 92 (2007) pp. 247-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-3-5/