Quasilinearization methods for nonlinear differential-functional parabolic equations: unbounded case
Agnieszka Bartłomiejczyk
Annales Polonici Mathematici, Tome 92 (2007), p. 247-263 / Harvested from The Polish Digital Mathematics Library

We consider the Cauchy problem for nonlinear parabolic equations with functional dependence represented by the Hale functional acting on the unknown function and its gradient. We prove convergence theorems for a general quasilinearization method in natural subclasses of unbounded solutions.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:280715
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-3-5,
     author = {Agnieszka Bart\l omiejczyk},
     title = {Quasilinearization methods for nonlinear differential-functional parabolic equations: unbounded case},
     journal = {Annales Polonici Mathematici},
     volume = {92},
     year = {2007},
     pages = {247-263},
     zbl = {1112.35094},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-3-5}
}
Agnieszka Bartłomiejczyk. Quasilinearization methods for nonlinear differential-functional parabolic equations: unbounded case. Annales Polonici Mathematici, Tome 92 (2007) pp. 247-263. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-3-5/