A Littlewood-Paley type inequality with applications to the elliptic Dirichlet problem
Caroline Sweezy
Annales Polonici Mathematici, Tome 92 (2007), p. 105-130 / Harvested from The Polish Digital Mathematics Library

Let L be a strictly elliptic second order operator on a bounded domain Ω ⊂ ℝⁿ. Let u be a solution to Lu=divf in Ω, u = 0 on ∂Ω. Sufficient conditions on two measures, μ and ν defined on Ω, are established which imply that the Lq(Ω,dμ) norm of |∇u| is dominated by the Lp(Ω,dv) norms of divf and |f|. If we replace |∇u| by a local Hölder norm of u, the conditions on μ and ν can be significantly weaker.

Publié le : 2007-01-01
EUDML-ID : urn:eudml:doc:280936
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-2-2,
     author = {Caroline Sweezy},
     title = {A Littlewood-Paley type inequality with applications to the elliptic Dirichlet problem},
     journal = {Annales Polonici Mathematici},
     volume = {92},
     year = {2007},
     pages = {105-130},
     zbl = {1134.35040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-2-2}
}
Caroline Sweezy. A Littlewood-Paley type inequality with applications to the elliptic Dirichlet problem. Annales Polonici Mathematici, Tome 92 (2007) pp. 105-130. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-2-2/