We identify the weight four newform of a modular Calabi-Yau manifold studied by Hulek and Verrill. The main obstacle is that this Calabi-Yau manifold is not rigid and has bad reduction at prime 13. Replacing the original fiber product of elliptic fibrations with a fiberwise Kummer construction we reduce the problem to studying the modularity of a rigid Calabi-Yau manifold with good reduction at primes p ≥ 5.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-1-7, author = {Grzegorz Kapustka and Micha\l\ Kapustka}, title = {Modularity of a nonrigid Calabi-Yau manifold with bad reduction at 13}, journal = {Annales Polonici Mathematici}, volume = {92}, year = {2007}, pages = {89-98}, zbl = {1114.14015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-1-7} }
Grzegorz Kapustka; Michał Kapustka. Modularity of a nonrigid Calabi-Yau manifold with bad reduction at 13. Annales Polonici Mathematici, Tome 92 (2007) pp. 89-98. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap90-1-7/