We give some examples of polynomially bounded o-minimal expansions of the ordered field of real numbers where the Weierstrass division theorem does not hold in the ring of germs, at the origin of ℝⁿ, of definable functions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-2-2, author = {Abdelhafed Elkhadiri and Hassan Sfouli}, title = {Weierstrass division theorem in definable $C^{$\infty$}$ germs in a polynomially bounded o-minimal structure}, journal = {Annales Polonici Mathematici}, volume = {89}, year = {2006}, pages = {127-137}, zbl = {1112.03033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-2-2} }
Abdelhafed Elkhadiri; Hassan Sfouli. Weierstrass division theorem in definable $C^{∞}$ germs in a polynomially bounded o-minimal structure. Annales Polonici Mathematici, Tome 89 (2006) pp. 127-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-2-2/