We study existence, uniqueness and form of solutions to the equation where α, β, γ and f are given, and stands for the even part of a searched-for differentiable function g. This equation emerged naturally as a result of the analysis of the distribution of a certain random process modelling a population genetics phenomenon.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-1-2, author = {Adam Bobrowski and Ma\l gorzata Kubali\'nska}, title = {On a functional equation with derivative and symmetrization}, journal = {Annales Polonici Mathematici}, volume = {89}, year = {2006}, pages = {13-24}, zbl = {1156.34338}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-1-2} }
Adam Bobrowski; Małgorzata Kubalińska. On a functional equation with derivative and symmetrization. Annales Polonici Mathematici, Tome 89 (2006) pp. 13-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-1-2/