On a functional equation with derivative and symmetrization
Adam Bobrowski ; Małgorzata Kubalińska
Annales Polonici Mathematici, Tome 89 (2006), p. 13-24 / Harvested from The Polish Digital Mathematics Library

We study existence, uniqueness and form of solutions to the equation αg-βg'+γge=f where α, β, γ and f are given, and ge stands for the even part of a searched-for differentiable function g. This equation emerged naturally as a result of the analysis of the distribution of a certain random process modelling a population genetics phenomenon.

Publié le : 2006-01-01
EUDML-ID : urn:eudml:doc:280224
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-1-2,
     author = {Adam Bobrowski and Ma\l gorzata Kubali\'nska},
     title = {On a functional equation with derivative and symmetrization},
     journal = {Annales Polonici Mathematici},
     volume = {89},
     year = {2006},
     pages = {13-24},
     zbl = {1156.34338},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-1-2}
}
Adam Bobrowski; Małgorzata Kubalińska. On a functional equation with derivative and symmetrization. Annales Polonici Mathematici, Tome 89 (2006) pp. 13-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-1-2/