We study existence, uniqueness and form of solutions to the equation where α, β, γ and f are given, and stands for the even part of a searched-for differentiable function g. This equation emerged naturally as a result of the analysis of the distribution of a certain random process modelling a population genetics phenomenon.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-1-2,
author = {Adam Bobrowski and Ma\l gorzata Kubali\'nska},
title = {On a functional equation with derivative and symmetrization},
journal = {Annales Polonici Mathematici},
volume = {89},
year = {2006},
pages = {13-24},
zbl = {1156.34338},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-1-2}
}
Adam Bobrowski; Małgorzata Kubalińska. On a functional equation with derivative and symmetrization. Annales Polonici Mathematici, Tome 89 (2006) pp. 13-24. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap89-1-2/