Under the assumption of twice continuous differentiability of some of the functions involved we determine all the weighted quasi-arithmetic means M,N,K such that K is (M,N)-invariant, that is, K∘(M,N) = K. Some applications to iteration theory and functional equations are presented.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap88-1-3, author = {Justyna Jarczyk and Janusz Matkowski}, title = {Invariance in the class of weighted quasi-arithmetic means}, journal = {Annales Polonici Mathematici}, volume = {89}, year = {2006}, pages = {39-51}, zbl = {1097.26019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap88-1-3} }
Justyna Jarczyk; Janusz Matkowski. Invariance in the class of weighted quasi-arithmetic means. Annales Polonici Mathematici, Tome 89 (2006) pp. 39-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap88-1-3/