Under the assumption of twice continuous differentiability of some of the functions involved we determine all the weighted quasi-arithmetic means M,N,K such that K is (M,N)-invariant, that is, K∘(M,N) = K. Some applications to iteration theory and functional equations are presented.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap88-1-3,
author = {Justyna Jarczyk and Janusz Matkowski},
title = {Invariance in the class of weighted quasi-arithmetic means},
journal = {Annales Polonici Mathematici},
volume = {89},
year = {2006},
pages = {39-51},
zbl = {1097.26019},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap88-1-3}
}
Justyna Jarczyk; Janusz Matkowski. Invariance in the class of weighted quasi-arithmetic means. Annales Polonici Mathematici, Tome 89 (2006) pp. 39-51. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap88-1-3/