Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials
Didier D'Acunto ; Krzysztof Kurdyka
Annales Polonici Mathematici, Tome 85 (2005), p. 51-61 / Harvested from The Polish Digital Mathematics Library

Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that |f|C|f|ϱ in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than 1-R(n,d)-1 with R(n,d)=d(3d-3)n-1.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:280831
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-5,
     author = {Didier D'Acunto and Krzysztof Kurdyka},
     title = {Explicit bounds for the \L ojasiewicz exponent in the gradient inequality for polynomials},
     journal = {Annales Polonici Mathematici},
     volume = {85},
     year = {2005},
     pages = {51-61},
     zbl = {1093.32011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-5}
}
Didier D'Acunto; Krzysztof Kurdyka. Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials. Annales Polonici Mathematici, Tome 85 (2005) pp. 51-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-5/