Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than with .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-5,
author = {Didier D'Acunto and Krzysztof Kurdyka},
title = {Explicit bounds for the \L ojasiewicz exponent in the gradient inequality for polynomials},
journal = {Annales Polonici Mathematici},
volume = {85},
year = {2005},
pages = {51-61},
zbl = {1093.32011},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-5}
}
Didier D'Acunto; Krzysztof Kurdyka. Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials. Annales Polonici Mathematici, Tome 85 (2005) pp. 51-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-5/