Let f: ℝⁿ → ℝ be a polynomial function of degree d with f(0) = 0 and ∇f(0) = 0. Łojasiewicz’s gradient inequality states that there exist C > 0 and ϱ ∈ (0,1) such that in a neighbourhood of the origin. We prove that the smallest such exponent ϱ is not greater than with .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-5, author = {Didier D'Acunto and Krzysztof Kurdyka}, title = {Explicit bounds for the \L ojasiewicz exponent in the gradient inequality for polynomials}, journal = {Annales Polonici Mathematici}, volume = {85}, year = {2005}, pages = {51-61}, zbl = {1093.32011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-5} }
Didier D'Acunto; Krzysztof Kurdyka. Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials. Annales Polonici Mathematici, Tome 85 (2005) pp. 51-61. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-5/