Let f: ℝⁿ → ℝ be a C² semialgebraic function and let c be an asymptotic critical value of f. We prove that there exists a smallest rational number such that |x|·|∇f| and are separated at infinity. If c is a regular value and , then f is a locally trivial fibration over c, and the trivialisation is realised by the flow of the gradient field of f.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-4, author = {Didier D'Acunto and Vincent Grandjean}, title = {On gradient at infinity of semialgebraic functions}, journal = {Annales Polonici Mathematici}, volume = {85}, year = {2005}, pages = {39-49}, zbl = {1092.32004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-4} }
Didier D'Acunto; Vincent Grandjean. On gradient at infinity of semialgebraic functions. Annales Polonici Mathematici, Tome 85 (2005) pp. 39-49. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-4/