Let R be a real closed field with a real valuation v. A ℤ-valued semialgebraic function on Rⁿ is called algebraic if it can be written as the sign of a symmetric bilinear form over R[X₁,. .., Xₙ]. We show that the reduction of such a function with respect to v is again algebraic on the residue field. This implies a corresponding result for limits of algebraic functions in definable families.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-3, author = {Ludwig Br\"ocker}, title = {Reduction of semialgebraic constructible functions}, journal = {Annales Polonici Mathematici}, volume = {85}, year = {2005}, pages = {27-38}, zbl = {1091.14015}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-3} }
Ludwig Bröcker. Reduction of semialgebraic constructible functions. Annales Polonici Mathematici, Tome 85 (2005) pp. 27-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-3/