Reduction of semialgebraic constructible functions
Ludwig Bröcker
Annales Polonici Mathematici, Tome 85 (2005), p. 27-38 / Harvested from The Polish Digital Mathematics Library

Let R be a real closed field with a real valuation v. A ℤ-valued semialgebraic function on Rⁿ is called algebraic if it can be written as the sign of a symmetric bilinear form over R[X₁,. .., Xₙ]. We show that the reduction of such a function with respect to v is again algebraic on the residue field. This implies a corresponding result for limits of algebraic functions in definable families.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:281084
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-3,
     author = {Ludwig Br\"ocker},
     title = {Reduction of semialgebraic constructible functions},
     journal = {Annales Polonici Mathematici},
     volume = {85},
     year = {2005},
     pages = {27-38},
     zbl = {1091.14015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-3}
}
Ludwig Bröcker. Reduction of semialgebraic constructible functions. Annales Polonici Mathematici, Tome 85 (2005) pp. 27-38. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-3/