The degree at infinity of the gradient of a polynomial in two real variables
Maciej Sękalski
Annales Polonici Mathematici, Tome 85 (2005), p. 229-235 / Harvested from The Polish Digital Mathematics Library

Let f:ℝ² → ℝ be a polynomial mapping with a finite number of critical points. We express the degree at infinity of the gradient ∇f in terms of the real branches at infinity of the level curves {f(x,y) = λ} for some λ ∈ ℝ. The formula obtained is a counterpart at infinity of the local formula due to Arnold.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:280505
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-19,
     author = {Maciej S\k ekalski},
     title = {The degree at infinity of the gradient of a polynomial in two real variables},
     journal = {Annales Polonici Mathematici},
     volume = {85},
     year = {2005},
     pages = {229-235},
     zbl = {1091.14017},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-19}
}
Maciej Sękalski. The degree at infinity of the gradient of a polynomial in two real variables. Annales Polonici Mathematici, Tome 85 (2005) pp. 229-235. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-19/