Nash cohomology of smooth manifolds
W. Kucharz
Annales Polonici Mathematici, Tome 85 (2005), p. 193-205 / Harvested from The Polish Digital Mathematics Library

A Nash cohomology class on a compact Nash manifold is a mod 2 cohomology class whose Poincaré dual homology class can be represented by a Nash subset. We find a canonical way to define Nash cohomology classes on an arbitrary compact smooth manifold M. Then the Nash cohomology ring of M is compared to the ring of algebraic cohomology classes on algebraic models of M. This is related to three conjectures concerning algebraic cohomology classes.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:280590
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-15,
     author = {W. Kucharz},
     title = {Nash cohomology of smooth manifolds},
     journal = {Annales Polonici Mathematici},
     volume = {85},
     year = {2005},
     pages = {193-205},
     zbl = {1094.14047},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-15}
}
W. Kucharz. Nash cohomology of smooth manifolds. Annales Polonici Mathematici, Tome 85 (2005) pp. 193-205. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-15/