It is quite natural to conjecture that a positively homogeneous function with degree d ≥ 2 on satisfies the Łojasiewicz gradient inequality with exponent θ = 1/d without any need for an analyticity assumption. We show that this property is true under some additional hypotheses, but not always, even for N = 2.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-13,
author = {Alain Haraux},
title = {Positively homogeneous functions and the \L ojasiewicz gradient inequality},
journal = {Annales Polonici Mathematici},
volume = {85},
year = {2005},
pages = {165-174},
zbl = {1101.26013},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-13}
}
Alain Haraux. Positively homogeneous functions and the Łojasiewicz gradient inequality. Annales Polonici Mathematici, Tome 85 (2005) pp. 165-174. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-13/