For every holomorphic function in two complex variables with an isolated critical point at the origin we consider the Łojasiewicz exponent ₀(f) defined to be the smallest θ > 0 such that near 0 ∈ ℂ² for some c > 0. We investigate the set of all numbers ₀(f) where f runs over all holomorphic functions with an isolated critical point at 0 ∈ ℂ².
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-11, author = {Evelia Garc\'\i a Barroso and Tadeusz Krasi\'nski and Arkadiusz P\l oski}, title = {The \L ojasiewicz numbers and plane curve singularities}, journal = {Annales Polonici Mathematici}, volume = {85}, year = {2005}, pages = {127-150}, zbl = {1095.32010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-11} }
Evelia García Barroso; Tadeusz Krasiński; Arkadiusz Płoski. The Łojasiewicz numbers and plane curve singularities. Annales Polonici Mathematici, Tome 85 (2005) pp. 127-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-11/