For every holomorphic function in two complex variables with an isolated critical point at the origin we consider the Łojasiewicz exponent ₀(f) defined to be the smallest θ > 0 such that near 0 ∈ ℂ² for some c > 0. We investigate the set of all numbers ₀(f) where f runs over all holomorphic functions with an isolated critical point at 0 ∈ ℂ².
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-11,
author = {Evelia Garc\'\i a Barroso and Tadeusz Krasi\'nski and Arkadiusz P\l oski},
title = {The \L ojasiewicz numbers and plane curve singularities},
journal = {Annales Polonici Mathematici},
volume = {85},
year = {2005},
pages = {127-150},
zbl = {1095.32010},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-11}
}
Evelia García Barroso; Tadeusz Krasiński; Arkadiusz Płoski. The Łojasiewicz numbers and plane curve singularities. Annales Polonici Mathematici, Tome 85 (2005) pp. 127-150. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap87-0-11/