Explicit extension maps in intersections of non-quasi-analytic classes
Jean Schmets ; Manuel Valdivia
Annales Polonici Mathematici, Tome 85 (2005), p. 227-243 / Harvested from The Polish Digital Mathematics Library

We deal with projective limits of classes of functions and prove that: (a) the Chebyshev polynomials constitute an absolute Schauder basis of the nuclear Fréchet spaces ()([-1,1]r); (b) there is no continuous linear extension map from Λ()(r) into ()(r); (c) under some additional assumption on , there is an explicit extension map from ()([-1,1]r) into ()([-2,2]r) by use of a modification of the Chebyshev polynomials. These results extend the corresponding ones obtained by Beaugendre in [1] and [2].

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:280468
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-3-3,
     author = {Jean Schmets and Manuel Valdivia},
     title = {Explicit extension maps in intersections of non-quasi-analytic classes},
     journal = {Annales Polonici Mathematici},
     volume = {85},
     year = {2005},
     pages = {227-243},
     zbl = {1106.26025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-3-3}
}
Jean Schmets; Manuel Valdivia. Explicit extension maps in intersections of non-quasi-analytic classes. Annales Polonici Mathematici, Tome 85 (2005) pp. 227-243. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-3-3/