Let V be an analytic variety in a domain Ω ⊂ ℂⁿ and let K ⊂ ⊂ V be a closed subset. By studying Jensen measures for certain classes of plurisubharmonic functions on V, we prove that the relative extremal function is continuous on V if Ω is hyperconvex and K is regular.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-3-2, author = {Frank Wikstr\"om}, title = {Continuity of the relative extremal function on analytic varieties in Cn}, journal = {Annales Polonici Mathematici}, volume = {85}, year = {2005}, pages = {219-225}, zbl = {1092.32018}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-3-2} }
Frank Wikström. Continuity of the relative extremal function on analytic varieties in ℂⁿ. Annales Polonici Mathematici, Tome 85 (2005) pp. 219-225. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-3-2/