Inégalités de Markov tangentielles locales sur les courbes algébriques singulières de ℝⁿ
Laurent Gendre
Annales Polonici Mathematici, Tome 85 (2005), p. 59-77 / Harvested from The Polish Digital Mathematics Library

We prove that every singular algebraic curve in ℝⁿ admits local tangential Markov inequalities at each of its points. More precisely, we show that the Markov exponent at a point of a real algebraic curve A is less than or equal to twice the multiplicity of the smallest complex algebraic curve containing A.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:280517
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-1-7,
     author = {Laurent Gendre},
     title = {Inegalites de Markov tangentielles locales sur les courbes algebriques singulieres de Rn},
     journal = {Annales Polonici Mathematici},
     volume = {85},
     year = {2005},
     pages = {59-77},
     zbl = {1112.41009},
     language = {fra},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-1-7}
}
Laurent Gendre. Inégalités de Markov tangentielles locales sur les courbes algébriques singulières de ℝⁿ. Annales Polonici Mathematici, Tome 85 (2005) pp. 59-77. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-1-7/