Applying a global bifurcation theorem for convex-valued completely continuous mappings we prove some existence theorems for convex-valued differential inclusions of the form x'∈ F(t,x), where x satisfies the Nicoletti boundary conditions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-1-3,
author = {Stanis\l aw Domachowski},
title = {A new approach to the existence results for orientor fields with Nicoletti's boundary conditions},
journal = {Annales Polonici Mathematici},
volume = {85},
year = {2005},
pages = {23-30},
zbl = {1091.47040},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-1-3}
}
Stanisław Domachowski. A new approach to the existence results for orientor fields with Nicoletti's boundary conditions. Annales Polonici Mathematici, Tome 85 (2005) pp. 23-30. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap86-1-3/