Universal sequences for Zalcman’s Lemma and Qm-normality
Shahar Nevo
Annales Polonici Mathematici, Tome 85 (2005), p. 251-260 / Harvested from The Polish Digital Mathematics Library

We prove the existence of sequences ϱn=1, ϱₙ → 0⁺, and zn=1, |zₙ| = 1/2, such that for every α ∈ ℝ and for every meromorphic function G(z) on ℂ, there exists a meromorphic function F(z)=FG,α(z) on ℂ such that ϱαF(nz+nϱζ) converges to G(ζ) uniformly on compact subsets of ℂ in the spherical metric. As a result, we construct a family of functions meromorphic on the unit disk that is Qm-normal for no m ≥ 1 and on which an extension of Zalcman’s Lemma holds.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:280358
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap85-3-6,
     author = {Shahar Nevo},
     title = {Universal sequences for Zalcman's Lemma and $Q\_m$-normality},
     journal = {Annales Polonici Mathematici},
     volume = {85},
     year = {2005},
     pages = {251-260},
     zbl = {1082.30023},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap85-3-6}
}
Shahar Nevo. Universal sequences for Zalcman’s Lemma and $Q_m$-normality. Annales Polonici Mathematici, Tome 85 (2005) pp. 251-260. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap85-3-6/