Decay estimates of solutions of a nonlinearly damped semilinear wave equation
Aissa Guesmia ; Salim A. Messaoudi
Annales Polonici Mathematici, Tome 85 (2005), p. 25-36 / Harvested from The Polish Digital Mathematics Library

We consider an initial boundary value problem for the equation utt-Δu-ϕ·u+f(u)+g(ut)=0. We first prove local and global existence results under suitable conditions on f and g. Then we show that weak solutions decay either algebraically or exponentially depending on the rate of growth of g. This result improves and includes earlier decay results established by the authors.

Publié le : 2005-01-01
EUDML-ID : urn:eudml:doc:280200
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap85-1-3,
     author = {Aissa Guesmia and Salim A. Messaoudi},
     title = {Decay estimates of solutions of a nonlinearly damped semilinear wave equation},
     journal = {Annales Polonici Mathematici},
     volume = {85},
     year = {2005},
     pages = {25-36},
     zbl = {1077.35029},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap85-1-3}
}
Aissa Guesmia; Salim A. Messaoudi. Decay estimates of solutions of a nonlinearly damped semilinear wave equation. Annales Polonici Mathematici, Tome 85 (2005) pp. 25-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap85-1-3/