Numerical approximations of parabolic differential functional equations with the initial boundary conditions of the Neumann type
Roman Ciarski
Annales Polonici Mathematici, Tome 83 (2004), p. 103-119 / Harvested from The Polish Digital Mathematics Library

The aim of this paper is to present a numerical approximation for quasilinear parabolic differential functional equations with initial boundary conditions of the Neumann type. The convergence result is proved for a difference scheme with the property that the difference operators approximating mixed derivatives depend on the local properties of the coefficients of the differential equation. A numerical example is given.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:280196
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap84-2-2,
     author = {Roman Ciarski},
     title = {Numerical approximations of parabolic differential functional equations with the initial boundary conditions of the Neumann type},
     journal = {Annales Polonici Mathematici},
     volume = {83},
     year = {2004},
     pages = {103-119},
     zbl = {1099.65068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap84-2-2}
}
Roman Ciarski. Numerical approximations of parabolic differential functional equations with the initial boundary conditions of the Neumann type. Annales Polonici Mathematici, Tome 83 (2004) pp. 103-119. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap84-2-2/