Convolution theorems for starlike and convex functions in the unit disc
M. Anbudurai ; R. Parvatham ; S. Ponnusamy ; V. Singh
Annales Polonici Mathematici, Tome 83 (2004), p. 27-39 / Harvested from The Polish Digital Mathematics Library

Let A denote the space of all analytic functions in the unit disc Δ with the normalization f(0) = f’(0) − 1 = 0. For β < 1, let Pβ=fA:Ref'(z)>β,zΔ. For λ > 0, suppose that denotes any one of the following classes of functions: M1,λ(1)=f:Rez(zf'(z))''>-λ,zΔ, M1,λ(2)=f:Rez(z²f''(z))''>-λ,zΔ, M1,λ(3)=f:Re1/2(z(z²f'(z))'')'-1>-λ,zΔ. The main purpose of this paper is to find conditions on λ and γ so that each f ∈ is in γ or γ, γ ∈ [0,1/2]. Here γ and γ respectively denote the class of all starlike functions of order γ and the class of all convex functions of order γ. As a consequence, we obtain a number of convolution theorems, namely the inclusions M1,αγ and M1,αγ, where is either β or M1,β. Here M1,λ denotes the class of all functions f in such that Re(zf”(z)) > -λ for z ∈ Δ.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:281088
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap84-1-2,
     author = {M. Anbudurai and R. Parvatham and S. Ponnusamy and V. Singh},
     title = {Convolution theorems for starlike and convex functions in the unit disc},
     journal = {Annales Polonici Mathematici},
     volume = {83},
     year = {2004},
     pages = {27-39},
     zbl = {1098.30013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap84-1-2}
}
M. Anbudurai; R. Parvatham; S. Ponnusamy; V. Singh. Convolution theorems for starlike and convex functions in the unit disc. Annales Polonici Mathematici, Tome 83 (2004) pp. 27-39. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap84-1-2/