Stability of solutions for an abstract Dirichlet problem
Marek Galewski
Annales Polonici Mathematici, Tome 83 (2004), p. 273-280 / Harvested from The Polish Digital Mathematics Library

We consider continuous dependence of solutions on the right hand side for a semilinear operator equation Lx = ∇G(x), where L: D(L) ⊂ Y → Y (Y a Hilbert space) is self-adjoint and positive definite and G:Y → Y is a convex functional with superquadratic growth. As applications we derive some stability results and dependence on a functional parameter for a fourth order Dirichlet problem. Applications to P.D.E. are also given.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:280943
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-3-9,
     author = {Marek Galewski},
     title = {Stability of solutions for an abstract Dirichlet problem},
     journal = {Annales Polonici Mathematici},
     volume = {83},
     year = {2004},
     pages = {273-280},
     zbl = {1097.47053},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-3-9}
}
Marek Galewski. Stability of solutions for an abstract Dirichlet problem. Annales Polonici Mathematici, Tome 83 (2004) pp. 273-280. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-3-9/