On the equivalence of Green functions for general Schrödinger operators on a half-space
Abdoul Ifra ; Lotfi Riahi
Annales Polonici Mathematici, Tome 83 (2004), p. 65-76 / Harvested from The Polish Digital Mathematics Library

We consider the general Schrödinger operator L=div(A(x)x)-μ on a half-space in ℝⁿ, n ≥ 3. We prove that the L-Green function G exists and is comparable to the Laplace-Green function GΔ provided that μ is in some class of signed Radon measures. The result extends the one proved on the half-plane in [9] and covers the case of Schrödinger operators with potentials in the Kato class at infinity K considered by Zhao and Pinchover. As an application we study the cone L() of all positive L-solutions continuously vanishing on the boundary xₙ = 0.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:280911
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-8,
     author = {Abdoul Ifra and Lotfi Riahi},
     title = {On the equivalence of Green functions for general Schr\"odinger operators on a half-space},
     journal = {Annales Polonici Mathematici},
     volume = {83},
     year = {2004},
     pages = {65-76},
     zbl = {1061.31006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-8}
}
Abdoul Ifra; Lotfi Riahi. On the equivalence of Green functions for general Schrödinger operators on a half-space. Annales Polonici Mathematici, Tome 83 (2004) pp. 65-76. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-8/