Mean lower bounds for Markov operators
Eduard Emel'yanov ; Manfred Wolff
Annales Polonici Mathematici, Tome 83 (2004), p. 11-19 / Harvested from The Polish Digital Mathematics Library

Let T be a Markov operator on an L¹-space. We study conditions under which T is mean ergodic and satisfies dim Fix(T) < ∞. Among other things we prove that the sequence (n-1k=0n-1Tk) converges strongly to a rank-one projection if and only if there exists a function 0 ≠ h ∈ L¹₊ which satisfies limn||(h-n-1k=0n-1Tkf)||=0 for every density f. Analogous results for strongly continuous semigroups are given.

Publié le : 2004-01-01
EUDML-ID : urn:eudml:doc:281018
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-2,
     author = {Eduard Emel'yanov and Manfred Wolff},
     title = {Mean lower bounds for Markov operators},
     journal = {Annales Polonici Mathematici},
     volume = {83},
     year = {2004},
     pages = {11-19},
     zbl = {1053.37002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-2}
}
Eduard Emel'yanov; Manfred Wolff. Mean lower bounds for Markov operators. Annales Polonici Mathematici, Tome 83 (2004) pp. 11-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-2/