Let T be a Markov operator on an L¹-space. We study conditions under which T is mean ergodic and satisfies dim Fix(T) < ∞. Among other things we prove that the sequence converges strongly to a rank-one projection if and only if there exists a function 0 ≠ h ∈ L¹₊ which satisfies for every density f. Analogous results for strongly continuous semigroups are given.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-2, author = {Eduard Emel'yanov and Manfred Wolff}, title = {Mean lower bounds for Markov operators}, journal = {Annales Polonici Mathematici}, volume = {83}, year = {2004}, pages = {11-19}, zbl = {1053.37002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-2} }
Eduard Emel'yanov; Manfred Wolff. Mean lower bounds for Markov operators. Annales Polonici Mathematici, Tome 83 (2004) pp. 11-19. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-2/