Let K be a closed convex cone with nonempty interior in a real Banach space and let cc(K) denote the family of all nonempty convex compact subsets of K. A family of continuous linear set-valued functions is a differentiable iteration semigroup with F⁰(x) = x for x ∈ K if and only if the set-valued function is a solution of the problem , Φ(0,x) = x, for x ∈ K and t ≥ 0, where denotes the Hukuhara derivative of Φ(t,x) with respect to t and for x ∈ K.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-1, author = {Andrzej Smajdor}, title = {Hukuhara's differentiable iteration semigroups of linear set-valued functions}, journal = {Annales Polonici Mathematici}, volume = {83}, year = {2004}, pages = {1-10}, zbl = {1056.39036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-1} }
Andrzej Smajdor. Hukuhara's differentiable iteration semigroups of linear set-valued functions. Annales Polonici Mathematici, Tome 83 (2004) pp. 1-10. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap83-1-1/