We deal with a bifurcation result for the Dirichlet problem ⎧ a.e. in Ω, ⎨ ⎩. Starting from a weak lower semicontinuity result by E. Montefusco, which allows us to apply a general variational principle by B. Ricceri, we prove that, for μ close to zero, there exists a positive number such that for every the above problem admits a nonzero weak solution in satisfying .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap82-1-9, author = {Francesca Faraci and Roberto Livrea}, title = {Bifurcation theorems for nonlinear problems with lack of compactness}, journal = {Annales Polonici Mathematici}, volume = {81}, year = {2003}, pages = {77-85}, zbl = {1273.35039}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap82-1-9} }
Francesca Faraci; Roberto Livrea. Bifurcation theorems for nonlinear problems with lack of compactness. Annales Polonici Mathematici, Tome 81 (2003) pp. 77-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap82-1-9/