Bifurcation theorems for nonlinear problems with lack of compactness
Francesca Faraci ; Roberto Livrea
Annales Polonici Mathematici, Tome 81 (2003), p. 77-85 / Harvested from The Polish Digital Mathematics Library

We deal with a bifurcation result for the Dirichlet problem ⎧-Δpu=μ/|x|p|u|p-2u+λf(x,u) a.e. in Ω, ⎨ ⎩u|Ω=0. Starting from a weak lower semicontinuity result by E. Montefusco, which allows us to apply a general variational principle by B. Ricceri, we prove that, for μ close to zero, there exists a positive number λ*μ such that for every λ]0,λ*μ[ the above problem admits a nonzero weak solution uλ in W1,p(Ω) satisfying limλ0||uλ||=0.

Publié le : 2003-01-01
EUDML-ID : urn:eudml:doc:280183
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap82-1-9,
     author = {Francesca Faraci and Roberto Livrea},
     title = {Bifurcation theorems for nonlinear problems with lack of compactness},
     journal = {Annales Polonici Mathematici},
     volume = {81},
     year = {2003},
     pages = {77-85},
     zbl = {1273.35039},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap82-1-9}
}
Francesca Faraci; Roberto Livrea. Bifurcation theorems for nonlinear problems with lack of compactness. Annales Polonici Mathematici, Tome 81 (2003) pp. 77-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap82-1-9/