A new variational principle and duality for the problem Lu = ∇G(u) are provided, where L is a positive definite and selfadjoint operator and ∇G is a continuous gradient mapping such that G satisfies superquadratic growth conditions. The results obtained may be applied to Dirichlet problems for both ordinary and partial differential equations.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-ap82-1-6, author = {Marek Galewski}, title = {New variational principle and duality for an abstract semilinear Dirichlet problem}, journal = {Annales Polonici Mathematici}, volume = {81}, year = {2003}, pages = {51-60}, zbl = {1273.47122}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap82-1-6} }
Marek Galewski. New variational principle and duality for an abstract semilinear Dirichlet problem. Annales Polonici Mathematici, Tome 81 (2003) pp. 51-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-ap82-1-6/